
Automated structure refinement with phenix.refine

Pavel Afonine

Computation Crystallography Initiative
Physical Biosciences Division

Lawrence Berkeley National Laboratory, Berkeley CA, USA

Australasian Crystallography school
 17th-24th July, 2010

Structure refinement workflow

Purified
object Crystals Experimental

Data

Initial
approximate

model

Model
Re-building Refinement

Validation
And

analysis

Deposition
(publishing)

phenix.refine

  Highly-automated state-of-the-art structure refinement tool of PHENIX

  Active development mainly at Lawrence Berkeley National Lab (USA):

-  Paul Adams
-  Pavel Afonine
-  Nathaniel Echols
-  Ralf Grosse-Kunstleve
-  Jeff Headd
-  Nigel Moriarty
-  Peter Zwart

+  valuable scientific support by many others (Marat Mustyakimov, Sasha
Urzhumtsev, Vladimir Lunin, …)

Automation of structure refinement

  What used to be in the past … and often still the case nowadays

  Clearly, the modern software should do all these steps automatically

  PHENIX is making a good progress in achieving this goal

Acta Cryst. (2002). D58, 2009-2017, Yousef et al.

Automation of structure refinement
Wang et al., Acta Cryst. (2007). D63, 1254-1268

phenix.refine: single program for a very broad range of resolutions

- Group ADP refinement
- Rigid body refinement
- Torsion Angle dynamics

- Restrained refinement (xyz,
ADP: isotropic, anisotropic,
mixed)
- Automatic water picking

-  Automatic NCS restraints

- Simulated Annealing

 - Automatic side chain rotamer fixing

-  Occupancies (individual, group, automatic
constrains for alternative conformations)

-  Various targets: LS, ML, MLHL,…

 Low Medium and High Subatomic

- TLS refinement

-  Use hydrogens at any resolution

- Refinement with twinned data

-  X-ray, Neutron, joint X-ray + Neutron

-  Built-in water picking and refinement

- Bond density model
- Unrestrained refinement
-  FFT or direct
-  Explicit hydrogens

Refine any part of a model with any strategy: all in one run

+ Automatic water picking
+ Simulated Annealing

+ Add and use hydrogens

Running phenix.refine

  Designed to be very easy to use

  Several ways of running:

1.  Command line version:

phenix.refine model.pdb data.hkl [parameters]

•  Highly customizable (more than 300 parameters available to change)

2.  Can be called from a Python script allowing to run it within different
contexts

3.  GUI

phenix.refine GUI

Refinement flowchart

Input data and model processing

Refinement strategy selection

Bulk-solvent, Anisotropic scaling, Twinning
parameters refinement

Ordered solvent (add / remove)

Target weights calculation
Coordinate refinement (real- and reciprocal space)
(rigid body, individual) (minimization or Simulated

Annealing)
ADP refinement

(TLS, group, individual iso / aniso)
Occupancy refinement (individual, group)

Output: Refined model, various maps, structure
factors, complete statistics, ready for deposition PDB
file

PDB model,
Any data format
(CNS, Shelx, MTZ, …)

Files for
COOT, O,
PyMol

Repeated
several times

Bulk-solvent modeling and anisotropic scaling

  Search for optimal UCRYSTAL, kSOL and BSOL:

A robust bulk-solvent correction and anisotropic scaling procedure.
Acta Cryst. (2005). P.V. Afonine, R.W. Grosse-Kunstleve & P.D. Adams

€

FMODEL = FMODEL = kOVERALL α FM h()
2

+ 1−α()2 FM Th()
2

€

FM h() = e−sUCRYSTAL s
t

FCALC_ATOMS + kSOLe
−
BSOL s

2

4 FMASK

  In case of twinning, twin fraction (α) is refined too

- remove “bad” water:
•  2mFo-DFc (peak height)
•  distances
•  map CC (2mFo-DFc, Fc)
•  B-factors and anisotropy
•  occupancy

- add new:
•  mFo-DFc,
•  distances

- pre-refine water parameters

Automatic Water Picking

Input data and model processing

Refinement strategy selection

Bulk-solvent, Anisotropic scaling, Twinning
parameters refinement

Ordered solvent (water picking)

Target weights calculation
Coordinate refinement

(rigid body, individual) (minimization or SA)
ADP refinement

(TLS, group, individual iso / aniso)
Occupancy refinement (individual, group)

Output: Refined model, various maps,
structure factors, complete statistics, ready for
deposition PDB file

  Water is updated (add/remove/refine) automatically as part of refinement run:

  No need to do it as a separate step using external tools

Refinement flowchart

Input data and model processing

Refinement strategy selection

Bulk-solvent, Anisotropic scaling, Twinning
parameters refinement

Ordered solvent (add / remove)

Target weights calculation
Coordinate refinement (real- and reciprocal space)
(rigid body, individual) (minimization or Simulated

Annealing)
ADP refinement

(TLS, group, individual iso / aniso)
Occupancy refinement (individual, group)

Output: Refined model, various maps, structure
factors, complete statistics, ready for deposition PDB
file

PDB model,
Any data format
(CNS, Shelx, MTZ, …)

Files for
COOT, O,
PyMol

Repeated
several times

Refinement target profile

Rigid body refinement

Low Resolution High

Solution

  Rigid body refinement challenges:
-  Need to use low resolution reflections to achieve a solution

o  Using too low resolution may not be good
o  Need to use higher resolution data to assure better solution
o  How to define low-high resolution border (3…4…6A)?

  PHENIX MZ protocol makes all these decisions automatically

?

Automatic multiple-zone rigid-body refinement with a large convergence radius.
P. V. Afonine, R. W. Grosse-Kunstleve, A. Urzhumtsev and P. D. Adams. J. Appl. Cryst. 42, 607-615 (2009)

False
solutions

Automated Rigid Body Refinement in PHENIX (MZ protocol)

 Resolution

Automatically define
lowest usable resolution
zone

This insures quick and
reliable convergence

Gradually add higher resolution reflections. This supports
convergence and assures higher precision of the solution.

Lowest Low High Highest

During rigid body refinement some large model movements are expected.
This invalidates the solvent mask, so the bulk-solvent model is updated at each step.

  All parameters used in the protocol are optimized to achieve the highest
convergence radius at minimal runtime.

-  This is done by the grid search over ~100000 trial refinements using more than
100 different structures.

Dual-space refinement: combining real and reciprocal space refinement

•  Can be done locally (for example, for a residue or ligand)

•  Grid search can be used -> Convergence radius can be dramatically
increased compared to gradient driven-refinement or SA

•  Ordered solvent update can be enabled at earlier stage

Why real-space refinement ?

  Eliminate the tedium of manual work on fixing side chains on graphics

Local real-space refinement

Update Fmodel and re-compute 2mFobs-DFmodel map
Real-space refine whole model into 2mFobs-DFmodel

Compute 2mFobs-DFmodel, mFobs-DFmodel, Fmodel
maps

for residue in residues:
 compute start T- and CC-values for residue
 if need_a_fix:
 for rotamer in rotamers:
 torsion grid search
 if is_better:
 residue = rotamer
 real-space refine residue: residuerefined
 if is_better:
 residue = residuerefined
 update structure with residue

N
 m

acro-cycles

Validate changes:
 compute 2mFobs-DFmodel, mFobs-DFmodel and Fmodel
 for residue in residues:
 if is_better:
 restore original residue (discard change)

phenix.refine protocol

Real-space refinement: torsion grid search

Refinement flowchart

Input data and model processing

Refinement strategy selection

Bulk-solvent, Anisotropic scaling, Twinning
parameters refinement

Ordered solvent (add / remove)

Target weights calculation
Coordinate refinement (real- and reciprocal space)
(rigid body, individual) (minimization or Simulated

Annealing)
ADP refinement

(TLS, group, individual iso / aniso)
Occupancy refinement (individual, group)

Output: Refined model, various maps, structure
factors, complete statistics, ready for deposition PDB
file

PDB model,
Any data format
(CNS, Shelx, MTZ, …)

Files for
COOT, O,
PyMol

Repeated
several times

  UCRYST – overall anisotropic scale (6 parameters).

  UTLS – rigid body displacements of molecules, domains, secondary structure
elements. UTLS = T + ALAt + AS + StAt (20 TLS parameters per group).

  ULOCAL – local vibration of individual atoms.

  ULIB – librational motion of side chain around bond vector.

Atomic Displacement Parameters (ADP or “B-factors”)

ULOCAL UGROUP UCRYST

isotropic anisotropic

UTOTAL

UTLS ULIB USUBGROUP

  Total ADP UTOTAL = UCRYST + UGROUP + ULOCAL

TLS refinement in PHENIX: robust and efficient

  Highly optimized algorithm based on systematic re-refinement of ~350 PDB
models

  In most of cases phenix.refine produces better R-factors compared to
published

  Don’t crash or get “unstable”

Rwork (PHENIX)

Rfree (PDB)

Rfree (PHENIX)

Rwork (PDB)

CNS (original refinement)
R-free = 34 %
R = 29 %

PHENIX – Isotropic restrained ADP
R-free = 28 %
R = 23 %

Synaptotagmin refinement at 3.2 Å (PDB code: 1DQV)

PHENIX – TLS + Isotropic ADP
R-free = 25 %
R = 20 %

ADP refinement: example

9% improvement in both Rwork and Rfree !

phenix.refine outputs TOTAL B-factor (iso- and anisotropic):

ATOM 1 CA ALA 1 37.211 30.126 28.127 1.00 26.82 C
ANISOU 1 CA ALA 1 3397 3397 3397 2634 2634 2634 C

UTOTAL = UATOM + UTLS + UCRYST

Isotropic equivalent

UTOTAL = UATOM + UTLS + UCRYST
Stored in separate
record in PDB file
header

ADP refinement: what goes to PDB

Atom records are self-consistent:

  Straightforward visualization (color by B-factors, or anisotropic ellipsoids)

  Straightforward computation of other statistics (R-factors, etc.) – no need
to use external helper programs for any conversions.

Occupancy refinement

ATOM 1 N AARG A 192 -5.782 17.932 11.414 0.72 8.38 N
ATOM 2 CA AARG A 192 -6.979 17.425 10.929 0.72 10.12 C
ATOM 3 C AARG A 192 -6.762 16.088 10.271 0.72 7.90 C
ATOM 7 N BARG A 192 -11.719 17.007 9.061 0.28 9.89 N
ATOM 8 CA BARG A 192 -10.495 17.679 9.569 0.28 11.66 C
ATOM 9 C BARG A 192 -9.259 17.590 8.718 0.28 12.76 C

ATOM 549 HA3 ARG A 34 -23.064 7.146 -23.942 1.00 15.44 H
ATOM 550 H AARG A 34 -24.447 7.644 -21.715 0.15 8.34 H
ATOM 551 D BARG A 34 -24.447 7.644 -21.715 0.85 7.65 D
ATOM 552 N ARG A 35 -22.459 9.801 -22.791 1.00 8.54 N

  Automatic constraints for
occupancies of atoms in

alternate locations

  Any user defined selections
for individual and/or group

occupancy refinement can be
added on top of the automatic

selection.

ATOM 549 AU A 34 -23.064 7.146 -23.942 0.78 15.44 Au

ATOM 6 S SO4 1 1.302 1.419 1.560 0.70 13.00
ATOM 7 O1 SO4 1 1.497 1.295 0.118 0.70 11.00
ATOM 8 O2 SO4 1 1.098 0.095 2.140 0.70 10.00
ATOM 9 O3 SO4 1 2.481 2.037 2.159 0.70 14.00
ATOM 10 O4 SO4 1 0.131 2.251 1.823 0.70 12.00

Occupancy refinement – more examples

ATOM 3690 O2 AEDO C 1 23.106 -3.999 -8.239 0.58 15.69 O
ATOM 3691 C2 AEDO C 1 21.710 -4.102 -8.630 0.58 15.43 C
ATOM 3692 C1 AEDO C 1 20.965 -2.841 -8.282 0.58 16.78 C
ATOM 3693 O1 AEDO C 1 21.111 -2.587 -6.901 0.58 19.33 O
ATOM 3687 I BIOD C 1 21.798 -3.596 -7.915 0.42 34.88 I

Refinement with twinned data

  Two steps to perform twin refinement:

 - run phenix.xtriage to get twin operator (twin law):

 % phenix.xtriage data.mtz

 - run phenix.refine:
 % phenix.refine model.pdb data.mtz twin_law="-h-k,k,-l"

  Taking twinning into account makes (big) difference:

 Interleukin mutant (PDB code: 1l2h)

 R/R-free (%)
 PHENIX (no twinning): 24.9 / 27.4
 PHENIX (twin refinement): 15.3 / 19.2

Hydrogen atoms in refinement
  Some facts about hydrogen atoms:

-  H atoms are not visible in X-ray maps at “typical macromolecular”
resolutions, that is ~1Å and lower. This is because:
-  H atom is a weak scatterer (much weaker than C, N or O atoms)
-  models contain too much noise so the H contribution is hidden in it.

Ideally (nearly error free model) one would see H even at ~2Å resolution.
 - Some or most of H atoms can be seen in maps at ultra-high resolutions

(~1Å and higher):
- The resolution itself is not the sufficient condition to see H: the noise

level should be low (small R-factor).

-  Hydrogen atoms constitute nearly 50% of the total atoms in protein
structures. Typical example: Fab structure (PDB code: 1f8t): 3593 non-H
atoms, 3269 H atoms.

-  Since H is a weak scatterer, it mostly contributes to the low resolution (and
not to the high!). The reason why we see H atoms only in structures
corresponding to high resolution data is because these structures are
typically accurate enough and complete so the noise level is small (small
R-factor).

  Expected benefits from using H atoms in refinement:

 - Improve R-factors (typically reduces R-factor by 1-2%)
 - Improve model geometry (eliminate bad clashes)
 - Model residual density at high resolution or in neutron maps

Hydrogen atoms in refinement

pdb resolution Rfree(no H) – Rfree(with H)
1akg 1.1 1.9
1byp 1.75 1.41
1dkp 2.3 0.93
1rgv 2.9 0.50

  Example: automatic re-refinement of 1000 PDB models with and without H:

  phenix.refine offers various options for handling H atoms at any resolution:

 - Riding model (low-high resolution)
 - Individual atoms (ultrahigh resolution or neutron data)
 - Account for scattering contribution or just use to improve the geometry

Option for automatic side chain flips to avoid clashes

  Apply side chain flips if necessary (Asn/Gln/His)

 Bad Good

Refinement using X-ray and Neutron diffraction data

2mFo-DFc maps
 X-ray (1.8 Å) Neutron (2.2 Å)

  Unlike typical resolution X-ray maps, neutron maps show hydrogen atoms

  phenix.refine can refine structures using neutron or both X-ray and neutron
data simultaneously (Joint XN refinement)

Fo-Fc, (H-, D-omit neutron map),
1.6 Å resolution

+2.6σ, D atoms

-2.9σ, H atoms

Refinement at subatomic resolution

Fo-Fc (orange) 2Fo-Fc (blue)

~340 structures in PDB at resolution higher than 1.0 Å

Aldose Reductase (0.66 Å resolution)

  phenix.refine has unique set of tools to correctly refine such structures

Modeling at subatomic resolution: IAS model

  Basics of IAS model:

 Afonine et al, Acta Cryst. D60 (2004)

  First practical examples of implementation and use in PHENIX:

 Afonine et al, Acta Cryst. D63, 1194-1197 (2007)

IAS modeling in PHENIX

j a b

a and b are pre-computed library for most bond types

Simple Gaussian is good enough:

IAS modeling: benefits
  Improve maps: reduce noise. Before (left) and after (right) adding of IAS.

  Find new features: originally wrong water (left) replaced with SO4 ion (right)
clearly suggested by improved map after adding IAS

X-ray and Neutron Crystallography: Complimentary Methods

  Still complimentary even at subatomic resolution (NAD structure)

Neutron 2mFo-DFc map at 0.65 Å resolution, ±2.4σ, green (positive), red (negative)

X-ray mFo-DFc map at 0.6 Å resolution, blue: H omit, 5σ, magenta: 2.8σ all atoms
included

Running phenix.refine (command line)

Model refinement

  Designed to be very easy to use

phenix.refine model.pdb data.hkl [parameters]

Some basic examples of running phenix.refine from the command line

  Refinement of individual coordinates, B-factors, and occupancies for some
atoms:

phenix.refine model.pdb data.hkl

  Add water picking and Simulated Annealing to default run above:

phenix.refine model.pdb data.hkl simulated_annealing=true
ordered_solvent=true

  Refinement of individual coordinates and B-factors using neutron data:

phenix.refine model.pdb data.hkl
main.scattering_dictionary=neutron

  To see all parameters (more than 300):

phenix.refine --show_defaults=all

Running phenix.refine

% phenix.refine model.pdb data.hkl parameter_file

where parameter_file contains following lines:

refinement.main {
 high_resolution = 2.0
 low_resolution = 15.0
 simulated_annealing = True
 ordered_solvent = True
 number_of_macro_cycles = 5
}
refinement.refine.adp {
 tls = chain A
 tls = chain B
}

For typing enthusiasts, the equivalent command line run would be:

% phenix.refine model.pdb data.hkl xray_data.high_resolution=2
xray_data.low_resolution=15 simmulated_annealing=true
ordered_solvent=True adp.tls=“chain A” adp.tls=“chain B”
main.number_of_macro_cycles=5

Typical way of phenix.refine run from the command line

1.  Get the file with all parameters:

% phenix.refine --show-defaults=all > parameter_file

2.  Edit the file parameter_file:
-  Remove all parameters that you are not planning to change (make sure to have

all { } matched)
-  Change the rest of parameters

3.  Run phenix.refine as following:

% phenix.refine model.pdb data.hkl parameter_file

or (If model.pdb and data.hkl are included into parameter_file file)

% phenix.refine parameter_file

Useful tip: to compare the set of parameters in your parameter_file file against the
set of all default parameters, type:

% phenix.refine --diff-params parameter_file

  When running: % phenix.refine model.pdb data.hkl

each item in model.pdb is matched against the CCP4 Monomer Library to
extract the topology and parameters and to automatically build corresponding
restraints.

  If model.pdb contains an item not available in CCP4 Monomer Library, e.g.
a novel ligand, use ReadySet! program to generate topology and parameter
definitions for refinement:

% phenix.ready_set model.pdb

This will produce the file LIG.cif and updated PDB file model.updated.pdb
with all H atoms added which can be used for refinement:

% phenix.refine model.pdb data.hkl LIG.cif

Some refinement runs require two steps: hydrogens and ligands

Restraints and novel ligands: REEL

% phenix.reel LIG.cif

Some refinement runs require two steps: twinning

  Two steps to perform twin refinement:

 - run phenix.xtriage to get twin operator (twin law):
% phenix.xtriage data.mtz

 - run phenix.refine:
% phenix.refine model.pdb data.mtz twin_law="-h-k,k,-l"

Model refinement - output

  Input command

phenix.refine model.pdb data.mtz [parameters]

  Output files

model_refine_001.eff summary of all input parameters

model_refine_001.geo summary of all restraints used

model_refine_001.log complete information about refinement

model_refine_001.pdb refined structure

model_refine_001_map_coeffs.mtz Fourier map coefficients

model_refine_002.def parameters for the next run

If data file is not in MTZ format, or there are multiple data files at input
(example: one with Fobs and the other one with free-R flags), then
phenix.refine will combine them into one MTZ data file called:
model_data.mtz and this file should be used in all subsequent runs.

Example of a complex refinement run
  Do the following:
-  refine individual coordinates for all atoms using minimization and

Simulated Annealing
-  refine coordinates of three rigid body groups:

o  chain A
o  chain B and chain C
o  chain D

-  individual anisotropic ADP for all Uranium atoms
-  individual isotropic ADP for all other atoms
-  three TLS groups:

o  atoms in residues from 1 to 300 of chain A and whole chain B
o  atoms from 301 to 500 in chain A
o  whole chain D

-  update water during refinement
-  use NCS in refinement
-  output everything into a files with prefix test

% phenix.refine model.pdb data.hkl parameters.eff

where parameters.eff contains following lines: see next slide…

Example of a complex parameter file
refinement {
 output {
 prefix = test
 }
 refine {
 strategy=*individual_sites individual_sites_real_space *rigid_body \
 *individual_adp group_adp *tls *occupancies group_anomalous
 sites {
 rigid_body = chain A
 rigid_body = chain B or chain C
 rigid_body = chain D
 }
 adp {
 individual {
 isotropic = not (element U)
 anisotropic = element U
 }
 tls = chain A and resseq 1:300 or chain B
 tls = chain A and resseq 301:500
 tls = chain D
 }}
 main {
 simulated_annealing = True
 ordered_solvent = True
 ncs = True
}}

