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Single-wavelength anomalous diffraction (SAD) utilizing the

weak signal of inherently present S atoms can be successfully

used to solve macromolecular structures, although this is

mostly performed with data from a synchrotron rather than a

laboratory source. Using high redundancy, sufficiently accu-

rate anomalous data may now often be collected in the

laboratory using Cu K� X-ray radiation. Systematic analyses

of a laboratory-derived data set illuminate the effects of data

quality, redundancy and resolution cutoffs on the ability to

locate the S atoms and phase the structure of Ptr ToxA, a

13.2 kDa toxin secreted by the fungus Pyrenophora tritici-

repentis. Three sulfurs contributed to the successful phasing of

the structure and were located using the program SHELXD. It

is observed that data quality improves with increasing

redundancy, but after a certain point becomes worse owing

to crystal decay, so that there is an optimal amount of data to

include for the sulfur substructure solution. Further, the

success rate in locating S atoms is dramatically improved at

lower resolutions and in a manner similar to data quality, there

exists an optimal resolution at which the likelihood of solving

the substructure is maximized. Based on these observations, a

strategy for SAD data collection and substructure solution is

suggested.
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1. Introduction

Over the past decade, the sequencing of complete genomes

has spurred a growing need for structural information on the

encoded gene products that has driven the development of

high-throughput crystallography (reviewed in Blundell et al.,

2002; Blundell & Patel, 2004; Brunzelle et al., 2003; Heine-

mann et al., 2001; Kuhn et al., 2002; Loll, 2003; Pusey et al.,

2005; Rupp, 2003; Sharff & Jhoti, 2003). At the same time,

methodological advances in X-ray crystallography such as the

increased availability of synchrotron radiation, cryocrystallo-

graphy and improved software for heavy-atom location and

density modification have increased our ability to solve

protein structures using single-wavelength anomalous

diffraction (SAD) based on the weak anomalous signal from

inherently present S atoms (hereafter called sulfur-SAD or

S-SAD).

The anomalous scattering length of S atoms (f 00 in electrons)

is maximal at � = 5.02 Å and, considering the wavelengths

normally used for protein crystallography, the strength

increases with increasing wavelength, with values of 0.234 at

1.0 Å to 0.557 at 1.54 Å (Cu K�) to 0.697 at 1.75 Å to 1.141 at

2.29 Å (Cr K�) (Creagh, 2004; Cromer & Liberman, 1970,

1981; Ramagopal et al., 2003). While � ’ 1.75 Å has been

commonly used for synchrotron-based S-SAD structure



determination (Dauter et al., 1999; Liu et al., 2000; Gordon et

al., 2001; Brown et al., 2002; Li et al., 2002; Micossi et al., 2002;

Ramagopal et al., 2003; Lartigue et al., 2004), it has been shown

recently that � ’ 2.1 Å is the wavelength at which one can

obtain the highest anomalous signal-to-noise ratio for S-SAD

data collection using synchrotron radiation (Carugo et al.,

2005; Mueller-Dieckmann et al., 2004, 2005). While most

S-SAD studies published to date have used synchrotron

radiation because of the need for very high accuracy data,

home sources are still more readily available and recent

efforts have shown that an in-house Cr K� source

(� ’ 2.29 Å) can be used (Yang et al., 2003; Kitago et al., 2005;

Watanabe et al., 2005) and even a Cu K� X-ray source is a

viable venue for S-SAD (Yang & Pflugrath, 2001; Lemke et al.,

2002; Debreczeni, Bunkoczi, Girmann et al., 2003; Olsen et al.,

2004; Debreczeni, Girmann et al., 2003). Indeed, with

� = 1.54 Å radiation the Bijvoet ratios for an ‘average’ 100-

residue prokaryotic and eukaryotic protein are �0.75%

(3.3 sulfurs) and 0.86% (4.4 sulfurs), respectively (Ramagopal

et al., 2003; Nagem et al., 2005), both of which are above the

value of 0.6% historically considered as the minimum Bijvoet

ratio sufficient to solve a protein structure using S-SAD

(Wang, 1985). While it is known that the Wang limit is based

on error-free data and is therefore not the best indicator

to predict successful structure solution (Zwart, 2005), the

theoretical values for prokaryotic and eukaryotic proteins still

suggest that in theory the in-house X-ray source holds great

promise for use in high-throughput crystallography.

For the structures solved de novo using S-SAD based on

Cu K� radiation (Lemke et al., 2002; Debreczeni, Bunkóczi,

Girmann et al., 2003; Olsen et al., 2004; Debreczeni, Girmann

et al., 2003), highly redundant data were collected from

strongly diffracting crystals to maximize the anomalous signal.

While one structure had a low Bijvoet ratio of 0.86 (Lemke et

al., 2002), the others had Bijvoet ratios that were much higher,

between 1.6 and 3.1, and thus these structures were not

stringent tests of the method. The common themes of strongly

diffracting crystals and high resolution are often considered to

be essential for successful phasing by S-SAD (Dauter &

Nagem, 2002; Debreczeni, Bunkóczi, Ma et al., 2003; Nagem et

al., 2005), despite some evidence to the contrary from both

theory (Wang, 1985) and experiment (Liu et al., 2000; Dauter

& Nagem, 2002; Ramagopal et al., 2003).

We have recently solved the structure of a 13.2 kDa protein,

Ptr ToxA from the fungal pathogen Pyrenophora tritici-

repentis, using highly redundant laboratory-based (Cu K�)

sulfur SAD data to locate and phase based on three strong

sulfur sites (one Met, one Cys and one sulfate) corresponding

to a Bijvoet ratio of 0.68% (Sarma et al., 2005). Accounting for

a fourth weak sulfate ion discovered during this retrospective

analysis, the true Bijvoet ratio for the structure is closer to

0.77%. In either case, the ratio is low enough to be considered

a challenging case. Here, we present a systematic analysis of

the effects of data quality and resolution on S-SAD

substructure solution and phasing. Our results counter the

commonly held views that increased redundancy and higher

resolution are always better.

2. Materials and methods

2.1. Purification and crystallization

Mature ToxA was purified from culture filtrates as

previously described (Sarma et al., 2005; Tuori et al., 1995).

Crystals with cubic morphology and dimensions of 0.15 � 0.15

� 0.15 mm were grown from a 1:1 drop using a reservoir

solution of 0.5 M (NH4)2SO4, 15% dioxane and 0.1 M MES

pH 6.5. The protein crystallizes in the cubic space group P213,

with unit-cell parameters a = b = c = 78.2 Å, a solvent content

of 60% and one molecule in the asymmetric unit. The reser-

voir solution with 10% glycerol served as a cryoprotectant.

Prior to data collection, the crystals were flash-frozen in loops

by dipping in liquid nitrogen after a 2 min incubation in the

cryoprotectant.

2.2. Data collection

As summarized in Table 1, extensive SAD data were

collected using no special data-collection strategies such as

collecting Bijvoets close in time.

Data extending to 1.9 Å resolution were collected from a

single crystal that was not fully fresh, but had been exposed for

�13 min to synchrotron radiation [beamline 8.2.1 of the

Advanced Light Source (ALS); Berkeley National Labora-

tory; 2 � 2 CCD array (ADSC Q210) detector; � = 1.75 Å].

For this in-house data collection, the crystal was rotated

around the ’-axis to collect a total of 1260 images (�17 d total

exposure) using Cu K� radiation (Rigaku RU-H3R rotating-

anode generator operating at 50 kV, 100 mA with an R-AXIS

IV image-plate detector; Table 1). The exposure time (20 min)

per image was a compromise designed to collect highly

redundant medium-resolution data even though longer

exposure times could have yielded higher quality single-pass

data. After the first 360 images, the ’ angle was offset by 0.5�

for the next 360 images in order to collect as ‘fullies’ those

reflections that were collected as partials in the earlier scan

and the offset was repeated every 360 images. With the data

represented as seven sequential 180� data sets (designated A
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Table 1
Data-collection statistics.

Values in parentheses are for the highest resolution shells.

No. of images 1260
�’ (�) 1
Wavelength (Å) 1.54
Exposure time per image (min) 20
Resolution limits (Å) 23.6–1.90 (1.97–1.90)
Unique observations 12754
Multiplicity† 112.3 (98.8)
Completeness (%) 99.9 (100)
Average I/�‡ 47.4 (14.2)
Mosaicity (�) 0.42
Rmeas†§ 11.2 (66.8)
Rmrgd-F†§ 2.5 (11.7)

† Bijvoets were not merged. ‡ An |F |/�|F | � 0 cutoff was used for data
processing. § Rmeas is the multiplicity-weighted merging R factor and Rmrgd-F is an
indicator of the quality of reduced data (Diederichs & Karplus, 1997).



to G; Table 2), the offset strategy was such that the oscillation

ranges of images in data sets A, B and C exactly matched those

in data sets E, F and G, respectively.

As reported in x3, the data were partitioned in various ways

to create a series of test data sets (Tables 2 and 3). Each of

these data sets was indexed and integrated using DENZO

(Otwinowski & Minor, 1997). Scaling and merging were

carried out using SCALEPACK (Otwinowski & Minor, 1997).

No special scaling protocols (Weiss et al., 2005) or radiation-

damage corrections (Diederichs et al., 2003) were used. The

raw diffraction data are available on request.

2.3. The reference model

As described by Sarma et al. (2005), the 13.2 kDa ToxA

structure was determined at 3.0 Å resolution using the sulfur

anomalous signal in the first 540 images of the in-house data

(data set A–C in Table 3). The automated model-building

program ARP/wARP (Perrakis et al., 1999) was used to extend

the 3.0 Å phases to 1.65 Å (available from a separate data

collection at a synchrotron using � = 1.0 Å X-rays) and

refinement yielded the final model with an R and Rfree of 15.7

and 18.3%, respectively (Sarma et al., 2005). This model (PDB

code 1zld) was subsequently used to calculate the phases that

are used here as the reference ‘true’ phases.

2.4. Substructure solution and phase determination

For the systematic analyses reported here, the various

anomalous data sets were prepared for substructure solution

using the program XPREP (Bruker Analytical X-ray

Systems). For all data sets except data set G, anomalous

difference maps using the calculated phases showed a weak

fourth peak (less than half as strong as the other sites) that

corresponded to a low-occupancy sulfate ion that was not

included in the original phasing model. To maximize the

relevance of this analysis in mimicking a true de novo struc-

ture determination (which might miss weak sites), we have not

used the minor site for phasing in this retrospective study.

Thus, searches for three sulfur positions were carried out with

the program SHELXD (Schneider & Sheldrick, 2002) using

1000 search cycles. An approximate number of ‘correct’

solutions was estimated by choosing a correlation-coefficient

cutoff partway between the group of ‘correct’ solutions with

significantly higher correlation coefficients and the group of

‘incorrect’ solutions with lower correlation coefficients. For
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Table 3
Data sets with increasing redundancies.

The data were processed to 1.90 Å, with the values in parentheses indicating values for the highest resolution shell (1.97–1.90 Å). For each 180� of data collection,
the redundancy is �21-fold. For the highest redundancy data sets, the lower than expected redundancies arise from a higher rate of rejection.

‘30’ ‘60’ ‘90’ ‘120’ ‘150’ A A–B A–C A–D A–E A–F A–G

No. of images 30 60 90 120 150 180 360 540 720 900 1080 1260
Unique obs. 12246 12473 12504 12531 12547 12578 12689 12719 12743 12749 12753 12754
Multiplicity† 3.5 (3.1) 7.0 (6.3) 10.5 (9.4) 14.0 (12.6) 17.5 (15.7) 21.0 (18.9) 42.0 (37.5) 62.9 (56.0) 83.9 (74.9) 102.8 (90.9) 110.4 (99.4) 112.3 (98.8)
Average I/�‡ 17.3 (3.9) 23.8 (5.4) 25.5 (6.2) 28.6 (6.7) 31.6 (7.3) 34.7 (8.0) 42.4 (11.2) 50.7 (12.8) 52.2 (14.0) 52.9 (14.6) 50.6 (14.9) 47.4 (14.2)
Rmeas†§ (%) 5.6 (33.5) 5.8 (36.2) 6.3 (40.0) 6.8 (44.4) 7.1 (45.9) 7.3 (46.5) 7.6 (46.0) 8.2 (50.7) 8.7 (53.0) 9.5 (57.3) 10.3 (62.0) 11.2 (66.8)
Rmrgd-F†§ (%) 8.5 (35.4) 6.6 (28.8) 5.7 (24.6) 5.1 (22.6) 4.8 (22.1) 4.5 (20.6) 3.1 (14.2) 2.8 (12.5) 2.5 (11.4) 2.4 (11.2) 2.4 (10.9) 2.5 (11.7)
Rmrgd-I†§ (%) 6.2 (37.5) 4.5 (29.2) 3.8 (24.0) 3.4 (22.9) 3.2 (22.1) 3.0 (21.0) 2.2 (14.6) 2.0 (13.0) 1.8 (11.8) 1.8 (11.2) 1.8 (11.6) 1.9 (12.2)
Rp.i.m.} (%) 2.9 (17.4) 2.2 (14.3) 1.9 (12.8) 1.8 (12.3) 1.7 (11.4) 1.6 (10.5) 1.2 (7.4) 1.0 (6.6) 0.9 (5.2) 0.8 (5.0) 0.8 (5.0) 0.8 (5.5)
Ranom†† (%) 6.1 (32.6) 4.8 (27.0) 3.9 (23.1) 3.5 (21.2) 3.3 (19.7) 3.1 (17.9) 2.3 (12.6) 2.1 (11.2) 2.0 (10.4) 2.0 (10.1) 2.2 (10.7) 2.7 (11.9)
Unit cell‡‡ (Å) 78.189 78.189 78.191 78.196 78.201 78.203 78.214 78.222 78.229 78.235 78.241 78.246

† Bijvoets were not merged. ‡ An |F |/�|F | � 0 cutoff was used for data processing. § Rmeas is the multiplicity-weighted merging R factor. Rmrgd-F and Rmrgd-I are indicators
of reduced data quality (Diederichs & Karplus, 1997). } Rp.i.m is the precision-indicating merging R factor, similar to Rmrgd-I (Weiss, 2001). †† Ranom =P

hkl ½ðjI
þ � I�jÞ=ðjIþ þ I�j=2Þ�. ‡‡ Post-refined unit-cell parameter as output from SCALEPACK (Otwinowski & Minor, 1997).

Table 2
Unique 180� data sets.

All data were processed to 1.90 Å resolution, with the values in parentheses indicating the values for the highest resolution shell (1.97–1.90 Å). For each 180� of
data collection, the redundancy is �21-fold. For the later data sets, the lower than expected redundancies are a consequence of a higher rate of rejection.

A B C D E F G

Oscillation range (�) 0–180 180–360 0.5–180.5 180.5–360.5 0–180 180–360 0.5–180.5
Unique obs. 12578 12605 12542 12587 12479 12479 12348
Multiplicity† 21.0 (18.9) 21.0 (19.1) 21.0 (18.5) 21.0 (18.8) 20.7 (17.0) 20.8 (17.3) 20.0 (12.5)
Average I/�‡ 34.7 (8.0) 33.5 (7.7) 30.4 (6.0) 31.1 (6.1) 28.0 (4.5) 28.3 (4.3) 25.1 (2.8)
Rmeas†§ (%) 7.3 (46.5) 7.0 (45.4) 7.8 (60.5) 7.8 (59.8) 8.8 (76.2) 8.6 (80.1) 9.8 (102.0)
Rmrgd-F†§ (%) 4.5 (20.6) 4.2 (19.8) 5.3 (28.5) 5.0 (26.0) 6.4 (36.1) 6.3 (39.0) 8.1 (55.0)
Rmrgd-I†§ (%) 3.0 (21.0) 3.0 (19.9) 3.2 (28.7) 3.2 (27.0) 3.7 (36.2) 3.7 (39.9) 4.2 (56.9)
Rp.i.m.} (%) 1.6 (10.5) 1.5 (10.3) 1.7 (13.8) 1.7 (13.5) 1.9 (18.0) 1.9 (18.9) 2.2 (27.8)
Ranom†† (%) 3.1 (16.7) 3.1 (18.7) 3.3 (23.5) 3.3 (23.9) 3.6 (29.6) 3.6 (32.6) 4.0 (44.4)
Unit cell‡‡ (Å) 78.203 78.225 78.243 78.256 78.267 78.277 78.278

† Bijvoets were not merged. ‡ An |F |/�|F | � 0 cutoff was used for data processing. § Rmeas is the multiplicity-weighted merging R factor. Rmrgd-F and Rmrgd-I are indicators
of reduced data quality (Diederichs & Karplus, 1997). } Rp.i.m. is the precision-indicating merging R factor, similar to Rmrgd-I (Weiss, 2001). †† Ranom =P

hkl ½ðjI
þ � I�jÞ=ðjIþ þ I�j=2Þ�. ‡‡ Post-refined unit-cell parameter as output from SCALEPACK (Otwinowski & Minor, 1997).



each analysis, the top three sulfur positions were refined

(positions and occupancies) and phasing was carried out using

the program MLPHARE (Otwinowski, 1991). The phase

ambiguity was resolved using the solvent-flattening procedure

of DM (Cowtan & Zhang, 1999). Thus, each run of substruc-

ture determination and phasing was carried out as a ‘new’ run,

imitating a de novo structure-determination experiment, i.e.

without a priori substructure and phase information. For all

additional data analyses, programs from the CCP4 suite

(Collaborative Computational Project, Number 4, 1994) and

CNS (Brünger et al., 1998) were used.

3. Results

3.1. Data sets

In order to systematically study the effects of data quality

on substructure solution and phasing, the 1260 oscillation

images in the LAB data set were divided into seven conse-

cutive 180-image data sets labeled A through G, each with

�20-fold redundancy (Table 2). A further 11 data sets were

created to study the effect of redundancy. As an extension of

the above-mentioned nomenclature, six data sets were labeled

A–B (360 images), A–C (540 images) and so on to A–G (1260

images) (Table 3). The five additional data sets created to test

the lower limit of data quality that would allow a structure

solution are designated as ‘30’, ‘60’, ‘90’, ‘120’ and ‘150’,

representing the number of images in each set (Table 3).

3.2. Crystal decay

Despite the crystals being frozen, decay was evident during

data collection as a visible loss in resolution between the first

and last image (not shown), as a decrease in the average

signal-to-noise ratio (I/�) of the reduced data and as increases

in the Rmeas and Rmrgd-F values (Diederichs & Karplus, 1997)

for data sets A through G (Table 2). While increases in the

unit-cell volume can be indicative of radiation damage

(Ravelli et al., 2002), for ToxA the volume increased a minimal

amount (�0.3% from data set A to data set G; Table 2).

Quantitatively, plotting decay R factors (Rd) as a function of

image number (Diederichs, 2006) clearly shows that the crystal

decay was smooth and continuous during the whole exposure

time (Fig. 1). For an estimate of how crystal decay impacted on

data accuracy, R factors were calculated between data sets B

through G and data set A as a function of resolution (Table 4).

Data set A was used as a reference since it was collected when

the crystal was freshest. The R factors were lowest between

data sets B and A and were highest between data sets G and A.

Interestingly, the values were paired such that the B versus A

R values are very similar to those of C versus A and so on

(Table 4). A plausible explanation is that data sets A, C, E and

G were collected over the same oscillation ranges (counting

the 0.5� offset) and so have minimal systematic differences

related to crystal geometry (e.g. absorption) or detector

imperfections (e.g. non-homogeneity). Thus, the R values

calculated using these data sets are more purely influenced by

crystal decay. On the other hand, the comparison of data set A

with data sets B, D and F will reflect decay plus systematic

errors and this will shift the R factors to higher values for those

data sets. Because systematic errors may be less resolution-

dependent, this would also explain why the R factors for data

sets C, E and G are higher at low resolution.

For the data sets of increasing redundancy (A through A–

G), the indicators of reduced data quality, I/� and Rmrgd-F, also

show the effects of decay (Table 3). I/� increases from data set

A to data set A–D, after which the values become worse

despite the increase in redundancy. Similarly, Rmrgd-F (lower

values of which indicate better data; Diederichs & Karplus,

1997) decreases from data set A to A–D, after which no

further improvement is seen. According to these statistical

measures, increased redundancy results in better quality data

up to data set A–D, after which the overall data quality is

negatively impacted by the merging of subsequent data.

Consistent with observations using other proteins (Bur-

meister, 2000; O’Neill et al., 2002; Ravelli & McSweeney, 2000;

Weik et al., 2000), a difference map calculated between data

sets A and G (Fobs, data set A � Fobs, data set G, �calc, reference)

showed that radiation damage involved specific loss of density
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Figure 1
Quantifying crystal decay during data collection. The decay R factor (Rd)
is plotted as a function of frame-number difference with the number of
reflection pairs contributing to the calculation. The smooth increase in Rd

is indicative of gradual crystal decay during data collection.

Table 4
Pairwise R factors for different data sets.

Values in parentheses are for the highest resolution bin (1.97–1.90 Å).

R factor† (%)

A versus B 9.7 (16.4)‡
A versus C 9.2 (19.3)‡
A versus D 17.5 (28.2)
A versus E 17.9 (31.4)
A versus F 25.8 (42.1)
A versus G 26.8 (45.2)

† R factor =
P
jFobs;A � Fobs;X j=

P
jFobs;Aj, where X represents one of the other data sets

(B through G). ‡ The lower overall R but higher ‘highest resolution bin’ R for A versus
C compared with A versus B is consistent with the systematic differences owing to data-
collection range (larger for data set B; see text) affecting low- and high-resolution data
equally, whereas the crystal decay (greater for data set C) affects the high-resolution
data.



for the carboxylate groups and disulfide S atoms. Maximal

local density loss was about 40%.

3.3. Assessment of anomalous signal

For SAD phasing, the quality of the anomalous signal is

most important, so it is of interest to see how this is impacted

by the trade-off between increasing redundancy and crystal

decay. Even without phases, for any single data set it is

possible to assess the strength of the anomalous signal by

splitting the data set in half and calculating the anomalous

correlation coefficients between the two halves (Evans, 2006;

Schneider & Sheldrick, 2002; Zwart, 2005). This has been

shown to be a more reliable indicator of anomalous signal than

the h�Fi/hFi ratios (Zwart, 2005). The individual data sets A

through G show a trend of decreasing correlation, indicating

that decay does impact on the quality of the anomalous signal

(Fig. 2a). The correlation remains fairly high at low resolution,

but the resolution at which it drops below 20% decreases from

near 3.5 Å for data set A to near 4.5 Å for G. The trend in the

anomalous correlations for data sets with increasing redun-

dancies is dramatic. The anomalous signal steadily increases

from data set ‘30’ to A–D. Despite further increases in

redundancy, no further increase is seen for data sets between

A–D and A–G (Fig. 2b).

The ratio of Ranom to Rp.i.m. has also been used as an indi-

cator of the level of anomalous signal (Mueller-Dieckmann et

al., 2004, 2005; Weiss, 2001; Weiss et al., 2004, 2005; Weiss,

Sicker, Djinovic Carugo et al., 2001; Weiss, Sicker & Hilgen-

feld, 2001), as it compares the size of the anomalous differ-

ences with the precision of the intensities from which those

differences are calculated (Weiss, 2001). Empirically, a ratio

of >1.5 has been considered as indicating anomalous data

(Mueller-Dieckmann et al., 2005). For all data sets analyzed

here, the ratio is between 1.5 and 2, fairly independent of

resolution and redundancy. The lack of clear trends such as

were seen with the anomalous correlation coefficients is

surprising and suggests that for these data the Ranom/Rp.i.m.

ratios are not very informative. We do not have an explanation

for this.

Given known phases (from the model), a more accurate

assessment of the anomalous signal present in each data set is

provided by peak heights in anomalous difference Fourier

maps (Fig. 3). While this could be performed as a function of

resolution, we have performed this analysis at 3.0 Å to observe

the trends. In all cases, the top three peaks correspond to the

three sulfur sites used for the original structure solution

(Sarma et al., 2005). Consistent with the other data-quality

statistics, the peak heights as a function of data redundancy

increase steadily from data set ‘30’ to A–D or A–E (Fig. 3). In

contrast to the other measures of data quality, the anomalous

peak heights do not just level out after data set A–E, but they

decrease dramatically to data set A–G (Fig. 3). By this

measure, data set A–G has an even lower anomalous signal

than data set A alone! This suggests that the anomalous

correlation coefficients reflect accurately the increase in

research papers

Acta Cryst. (2006). D62, 707–716 Sarma & Karplus � Low-resolution sulfur SAD phasing 711

Figure 2
Phase-independent assessment of the anomalous signal. Correlation
coefficients (%) between the anomalous differences for (a) data sets A
through G and (b) data sets A through A–G are plotted against
resolution.

Figure 3
Effect of redundancy on the anomalous peak heights at 3.0 Å resolution.
The anomalous peak heights (in �r.m.s.) of the top three peaks, Met174
(closed diamonds), Sulfate501 (open circles), Cys160 (closed triangles),
and the largest noise peak plotted as a function of number of images in
each data set. The fourth largest anomalous peak is a second sulfate ion
(not shown) that is weak but consistently present. For data sets B through
G, the respective anomalous peak heights are data set B, 14.3, 10.1, 11.4,
4.0; data set C, 14.9, 10.6, 6.8, 4.1; data set D, 14.0, 10.1, 9.2, 3.7; data set E,
12.9, 8.5, 8.4, 3.9; data set F, 10.9, 9.0, 7.4, 4.0; data set G, 11.5, 8.0, 7.2, 3.6.



anomalous signal, but are not sensitive reporters of the loss in

anomalous signal arising from the addition of decayed data.

As a measure of the effects of crystal decay independent of

redundancy changes, the sulfur anomalous peak heights for

data sets A to G show a steady decrease with increased crystal

decay (see legend to Fig. 3).

3.4. Substructure determination

A systematic study of the effects of redundancy, crystal

decay and resolution on substructure determination was

carried out for data sets ‘30’ through A–G at resolution cutoffs

of 2.0, 2.5, 3.0 and 3.5 Å. Representative results are given by

histograms of correlation coefficients at 3.0 Å resolution

(Fig. 4a) and the results at all four resolutions are summarized

in terms of the correlation coefficients and number of correct

sulfur positions found for the best trial and the number of

trials significantly above the noise level (Table 5). At all four

resolutions, the indicators show that the ability to find the

correct sites is maximal for data sets A–C or A–D (or A–E at

2.0 Å resolution) and steadily decreases both toward lower or

higher redundancy. Interestingly, as was seen for the anom-

alous difference map peak heights, data set A–G seems

roughly similar in phasing power to data set A. The best data

sets (A–C and A–D) led to correct solutions at all resolutions,

but for any given data set the success rate strongly increased

with decreasing resolution, for example from 3% at 2.0 Å to

53% at 3.5 Å resolution for data set A–D (Table 5). Also, the

searches carried out at 2.0 Å resolution only yielded a distinct

population of correct solutions for data sets A–C through A–F,

whereas those carried out using the 3.5 Å resolution cutoff

yielded distinctly correct solutions for a broader set of data

sets: ‘90’ through A–G (Table 5). Finally, the separation of the

correlation coefficient of the ‘correct’ trials from the ‘incor-

rect’ trials is increasingly pronounced at the lower resolutions

(data not shown).

To separately assess the effects of crystal decay on

substructure solution, with no influence of redundancy,

substructure solution attempts were made using data sets A

through G, each of which is based on 180� of data. We only

tested the behavior using 3.0 and 3.5 Å resolution cutoffs,

since we expected solution clarity to decrease with decay, and

only these resolutions gave sufficiently strong success rates for

data set A that there would be room for monitoring a decrease

in quality. The strong trend at both 3.0 and 3.5 Å resolution is

a steady decrease in the number of correct trials with

increased decay to the point that for data set G, even though a

correct solution was found, its correlation coefficient was not
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Table 5
Substructure solution for increasing redundancy data sets.

The first line indicates the approximate number of ‘correct’ solutions out of 1000 search trials, with the correlation coefficient of all reflections of the best solution
(as output by SHELXD) in parentheses. The second line of each entry is the number of correct sulfur positions (out of the three) located by SHELXD (see x2).

‘30’ ‘60’ ‘90’ ‘120’ ‘150’ A A–B A–C A–D A–E A–F A–G

2.0 Å 0 (9.1) 0 (8.3) 0 (9.2) 0 (8.8) 0 (8.4) 0 (8.5) 0 (8.7) 12 (16.4) 20 (16.9) 27 (16.9) 24 (14.0) 0 (8.4)
0 0 0 1 1 2 3 3 3 3 3 2

2.5 Å 0 (11.8) 0 (11.1) 0 (12.0) 0 (11.9) 22 (15.3) 9 (20.1) 121 (24.4) 214 (29.5) 236 (28.7) 203 (28.7) 115 (23.9) 4 (19.1)
0 0 3 3 3 3 3 3 3 3 3 3

3.0 Å 0 (17.4) 0 (18.4) 3 (19.6) 44 (23.5) 48 (24.5) 80 (27.7) 411 (34.7) 408 (39.7) 435 (38.6) 348 (37.6) 239 (30.6) 74 (22.5)
0 0 3 3 3 3 3 3 3 3 3 3

3.5 Å 0 (20.4) 0 (22.7) 52 (27.3) 218 (30.6) 79 (31.8) 165 (33.4) 502 (41.4) 523 (45.4) 525 (44.9) 332 (42.8) 267 (36.7) 120 (29.9)
0 2 3 3 3 3 3 3 3 3 3 3

Figure 4
Effects of redundancy and radiation damage on substructure solution
results using a 3.0 Å resolution cutoff. Histograms are shown of the
correlation coefficients for the 1000 substructure-solution trials carried
out at 3.0 Å resolution for (a) data sets ‘30’ through A–G and (b) data sets
A through G. Each histogram has two major peaks, one at higher
correlation coefficients corresponding to correct solutions and one at
lower correlation coefficient corresponding to non-solutions. The printed
number gives the total number of trials in the high correlation coefficient
group. The higher the number of correct solutions and the greater the
separation of the high and low groups, the clearer the solution.



very distinct from those of the non-solutions (Fig. 4b and

Table 6).

Faced with the result that the lower resolution cutoffs

yielded better success, we used data set A–D, the best

performing data set at all resolutions thus far tested, to

attempt substructure solution at five additional resolution

cutoffs: 4.0, 4.5, 5.0, 5.5 and 6.0 Å. Surprisingly, clear solutions

were obtained all the way up to 6.0 Å with ever-increasing

correlation coefficients (Fig. 5). The maximal success rate was

63% using the 4.0 Å resolution cutoff.

3.5. Phase determination

Phases were calculated for each data set and resolution

combination using the sulfur substructure determined for that

combination. Phase quality was evaluated by calculating the

differences between the experimental phases (both before and

after density modification) and the final refined 1.65 Å

calculated phases (see x2). Fig. 6(a) shows the set of phase

differences calculated for data set A–D using three sulfur

positions at various resolutions. At all resolutions between 2.0

and 4.5 Å, phasing succeeded with comparable accuracy

(while phase determination below 4.5 Å worked well, the

density-modification routine did not

work at these resolutions). These results

are representative, as all data sets at all

resolutions led to similar quality phase

sets that would easily be accurate

enough to guide modeling. This even

extends to data sets that did not allow

substructure solution; for instance,

when given the correct sulfur sites, even

data set ‘30’ yielded phases at 3.0 Å

resolution equivalent to those seen in Fig. 6(a) (�’pre-DM/

�’post-DM = 66.3/51.2�).

In order to find out the phasing power of the ‘unsuccessful’

substructure results, phases were calculated using the incom-

plete sulfur models found using certain data sets at 2.0 Å

resolution (Fig. 6b). The phases calculated using two and three
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Figure 5
Effect of resolution cutoff on substructure-solution success. Histograms
for the correlation coefficients for the 1000 substructure solutions are
shown for data set A–D using nine resolution cutoffs in the range 2.0–
6.0 Å at 0.5 Å intervals. See the legend of Fig. 4 for a description of the
plot. The closest distances between the three sulfurs, including symmetry-
related atoms, are 25.0 Å for Met174–Met174, 23.8 Å for Cys160–Cys160,
8.9 Å for Sulfate501–Sulfate501, 14.7 Å for Met174–Sulfate501, 18.8 Å
for Sulfate501–Cys160 and 13.8 Å for Met174–Cys160, so that for locating
S atoms in this crystal structure even 6 Å can be considered atomic
resolution.

Table 6
Substructure solution for the 180� data sets.

Three (of three) correct sulfur positions are located using the data sets at both resolutions. The top line
indicates the approximate number of ‘correct’ solutions out of 1000 search trials with the correlation
coefficient of all reflections of the best solution (as output by SHELXD) in parentheses.

A B C D E F G

3.0 Å 80 (27.7) 41 (25.2) 42 (23.6) 25 (22.2) 10 (20.1) 2 (19.5) 3 (16.5)
3.5 Å 165 (33.4) 110 (31.6) 77 (31.0) 49 (30.2) 100 (26.0) 19 (26.3) 22 (22.8)

Figure 6
Quality of experimental phases. Phase differences between experimental
phases [before (thin lines) and after (thick lines) density modification]
and final refined phases are plotted as a function of resolution. (a)
Experimental phases were calculated using three sulfur positions and
data set A–D at six different resolutions: 2.0 Å (blue), 2.5 Å (violet),
3.0 Å (orange), 3.5 Å (cyan), 4.0 Å (purple) and 4.5 Å (red). These
differences are representative of the quality of phases calculated using
different resolution cutoffs. (b) Experimental phases calculated at 2.0 Å
resolution using data set A–D (three sites, blue), data set A (two sites,
violet) and data set ‘150’ (one site, orange) are shown. They are
representative of phase errors from any data set using three, two or one
sulfur site(s) for phasing. Phases calculated from substructures having no
correct sites were random (90� phase difference), as expected.



sulfur sites are of similar quality and the automated model-

building program ARP/wARP was able to build �90% of the

model. Phases calculated with only one site were much less

accurate and experimental maps calculated from them might

be interpretable with difficulty, but ARP/wARP failed to build

a model.

4. Discussion

This study was undertaken to understand the effects of

redundancy, crystal decay and resolution limits on the ability

of a given data set to lead to substructure solution and

subsequent phasing by S-SAD. Our analyses of the ToxA data

reinforce a number of well known principles: that data quality

is of great importance and that increased multiplicity can

improve data quality immensely. Furthermore, our analyses

allow us to draw two additional conclusions of practical

importance. Firstly, for data collected from a single crystal, as

multiplicity increases the data improve and then become

worse, so that there is an optimal amount of data to include for

successful substructure solution. Secondly, substructure solu-

tion success is a sensitive function of resolution and there is an

optimal resolution cutoff for successful substructure solution

that will be structure and data-quality dependent.

4.1. Higher multiplicity does not necessarily mean better
data

It has been pointed out that crystal decay can limit data

quality, but in published S-SAD structure determinations data

quality and phasing power always increase monotonically with

increasing redundancy (Dauter et al., 2002; Dauter & Nagem,

2002; Debreczeni, Bunkóczi, Girmann et al., 2003; Olsen et al.,

2004; Ramagopal et al., 2003; Roeser et al., 2005; Zwart, 2005;

Dauter & Adamiak, 2001; Stevenson et al., 2004; Debreczeni,

Bunkóczi, Ma et al., 2003). Here, this is not the case.

The behavior of decay R factors (Fig. 1), R factors calcu-

lated between data sets B to G versus A (Table 4), the

anomalous signal for data sets A through G (Fig. 2a) and

substructure-solution success using these data sets (Fig. 4b and

Table 6) all show that crystal decay is a process that

continuously decreases data quality with increased exposure.

Despite the fact that decay begins with the first image, the

properties of the data sets with increasing redundancies (‘30’

through A–G) indicate that for a certain period (in this case

through data set A–D) adding more data improves overall

data quality, as seen in the I/�, Rmrgd-F (Table 3), the anom-

alous signal (Fig. 2b) and the substructure-solution success

(Fig. 4a and Table 5). However, there is then a change with the

merging of data sets E, F and G. While the data-quality

statistical indicators continue to increase or stay the same, the

anomalous signal quality is decreased as shown by the

dramatic drop in anomalous difference map peak heights

(Fig. 3) and in substructure-solution success rates (Fig. 4a).

This disparate behavior between the data quality statistical

measures and the actual data quality of the anomalous signal

suggests that the standard statistics are not sensitive indicators

of the anomalous signal quality. Among the statistics that were

calculated from the data alone, it seems the anomalous

correlation coefficient is the most informative; it shows

dramatic increases from data set ‘30’ through A–D, matching

well the true level of anomalous signal. Even this statistic,

though, does not accurately capture the deleterious nature of

including data sets E, F and G. These results emphasize the

important point that more data are not always better, but this

may not be obvious from the statistics.

4.2. Substructure olution success is highly dependent on the
resolution cutoff chosen

Our analyses have shown that for data sets with increasing

redundancies, the anomalous correlation coefficients are

consistently higher in lower resolution bins compared with the

higher resolution bins (Fig. 2). The greater anomalous signal in

the lower resolution bins is directly reflected in the ability to

locate the S atoms using lower resolution cutoffs. For data sets

‘90’ to A–G, the correlation coefficients and the number of

correct solutions increase with decreasing resolution for each

data set (Fig. 4a and Table 5). Furthermore, the distinction in

the correlation-coefficient values between the correct and

incorrect solutions is much more pronounced using the 3.5 Å

cutoff compared with using the 2.0 Å cutoff (not shown). Our

data analyses show that anomalous data from as few as 60

images are sufficient to solve the structure if the search is

performed using the low resolution of 3.5 Å (Table 5).

In fact, when the data are truncated to unprecedented lower

resolutions (up to 6.0 Å), the sulfur positions are still located

(Fig. 5). Not surprisingly, the correlation coefficients of the

solutions mirror the anomalous correlation coefficients by

becoming even higher as resolution becomes lower (Figs. 2b

and 5). However, the success rate does not simply increase

with decreasing resolution, but is maximal using the 4.0 Å

cutoff and decreases with increasing or decreasing resolution

within data set A–D (Fig. 5). This clearly shows that there

exists an optimal resolution cutoff at which the likelihood of

structure solution is maximized.

These results contradict a widespread expectation, recently

stated by Nagem et al. (2005), that for data with low theor-

etical anomalous signal successful substructure solution using

S-SAD ‘requires high or even atomic resolution data’. This

expectation may be a carry-over from the legendary 1.5 Å

resolution S-SAD phasing of crambin (Hendrickson & Teeter,

1981) and the fact that the requirement of very high resolution

data is commonly associated with the use of direct methods

(Debreczeni, Girmann et al., 2003; Ramagopal et al., 2003).

The power of low-resolution data for S-SAD is actually not a

new observation, but was first pointed out by Liu et al. (2000),

who solved their substructure at 4.5 Å resolution and pointed

out that for solving a substructure of isolated S-atom scat-

terers, 4.5 Å does correspond to atomic resolution. Also,

Schneider & Sheldrick (2002) promoted the concept of only

using resolution ranges having anomalous correlation coeffi-

cients greater that 30% (Dauter & Nagem, 2002; Debreczeni,

Bunkoczi, Girmann et al., 2003), because including higher
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resolution data that have poor anomalous signal will only add

noise and thus hinder substructure solution. Finally, Dauter &

Nagem (2002) were surprised to note from their study that ‘the

solution of the partial structure of anomalous scatterers can be

obtained at high and as well as low resolution, although at low

resolution the chance of success is higher’. Our work

emphasizes this point that not only might substructure solu-

tion attempts at resolutions lower than the limit of data

collected succeed, they may even generally be better. The only

real downside of lower resolution substructure solution is the

possible inability to resolve the two sulfurs of a disulfide at

resolutions lower than �2.5 Å.

The result of better substructure solutions using low-

resolution cutoffs raises the intriguing question of whether

previous studies that reported the failure or limited success of

S-SAD (Lemke et al., 2002; Usón et al., 2003) would have had

better success if lower resolution cutoffs were used. In the

work of Lemke et al. (2002) on Escherichia coli arginino-

succinate synthetase (EAS; a 51 kDa protein with 19 S atoms

and 0.86% theoretical anomalous signal) substructure solution

barely succeeded (a success rate of 0.17%) using a 2.0 Å

resolution cutoff. Based on extrapolation from our analyses, it

is quite possible the success rate would have been much higher

with a lower resolution cutoff. In the work of Usón et al. (2003)

on R11, substructure-solution attempts failed using a resolu-

tion cutoff of 2.5 Å and no other cutoffs were tried. However,

the 30% anomalous correlation coefficient cutoff for that data

set was at 3.3 Å resolution, making it quite plausible that the

data were sufficient to drive structure solution if a lower

resolution cutoff had been used.

4.3. Strategy for in-house sulfur SAD structure solution

The results of our analyses allow us to propose a concrete

strategy for data collection, assessment of the anomalous

signal and substructure solution for S-SAD using the in-house

Cu K�X-ray source. The approach would be to start collecting

data on a single crystal, monitoring statistics that are indica-

tors of general reduced data quality (I/�, Rmrgd-F, Rp.i.m.;

Diederichs & Karplus, 1997; Weiss, 2001), as well as moni-

toring the anomalous signal via the anomalous correlation

coefficients. Data collection should be continued as long as

these parameters improve with increasing redundancy. When

these parameters reach a plateau, data collection on a fresh

crystal should be started in order to avoid decreasing the data

quality. This strategy is an important adjustment from the

strategy proposed by Debreczeni, Girmann, Ma et al. (2003),

where it was suggested ‘simply to continue to collect data,

increasing the redundancy, until the structure can be solved’.

Since the anomalous correlation coefficient is one of the

most useful indicators for determining the amount of anom-

alous signal (Fig. 2; Evans, 2006; Schneider & Sheldrick, 2002;

Zwart, 2005), it should used to monitor the increase or

decrease in the anomalous signal, which in turn can be used to

guide the crucial decision of resolution cutoffs for substructure

solution. For the original ToxA substructure solution, the data

were truncated at a resolution (3.0 Å) where the anomalous

correlation was �20%. This is slightly lower than the range of

25–30% recommended by Schneider & Sheldrick (2002).

While this range can be used as a guide for determining

resolution cutoffs for initial substructure solution attempts, it

should not be used as a rule. Lower resolution cutoffs, all the

way up to 6.0 Å, should be tried for locating sulfur positions;

then, if need be, the identified substructure can be used with

higher resolution data for phasing and density modification.

Given the slow nature of in-house data collection, it makes

sense to attempt structure solution even while data collection

is in progress. In hindsight, the ToxA structure could be solved

using only data from 60 images, but we did not try until much

later. We suspect merging data from fresh isomorphous crys-

tals should allow data quality to be improved even for crystals

that decay rapidly (Diederichs & Karplus, 1997).

The analyses presented here underscore suggestions made

by others that in-house Cu K� S-SAD is a powerful technique

(Liu et al., 2000; Dauter et al., 1999; Dauter, 2002; Dauter &

Nagem, 2002) and provides evidence that the mindset of

requiring high-resolution data has led to an underappreciation

of just how powerful it is. Taking into account the natural

presence of S atoms in proteins (Ramagopal et al., 2003;

Nagem et al., 2005), it should find wide applicability in high-

throughput structure determination.
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